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Dynamic stall due to unsteady marginal separation 

By J. W. ELLIOTT 
Department of Applied Mathematics, University of Hull, Hull HU6 7RX, UK 

AND F. T. SMITH 
Department of Mathematics, University College London, London WClE 6BT, UK 

(Received 20 May 1986) 

A theoretical investigation into the next stage of dynamic stall, concerning the 
beginnings of eddy shedding from the boundary layer near an aerofoil’s leading edge, 
is described by means of the unsteady viscous-inviscid interacting marginal 
separation of the boundary layer. The fully nonlinear stage studied in the present 
paper is shown to match with a previous ‘ weakly nonlinear ’ regime occurring in the 
earlier development of the typical eddy from its initially slender thin state. Numerical 
solutions followed by linear and nonlinear analysis suggest that with confined initial 
conditions the strong instabilities in the present unsteady flow tend to force a 
breakdown within a finite time. This leads on subsequently to an unsteady predom- 
inantly inviscid stage where the eddy becomes non-slender, spans the entire boundary 
layer and its evolution then is governed by the Euler equations. This is likely to be 
followed by the shedding of the eddy from the boundary layer. 

1. Introduction 
Dynamic stall is associated with, and has its beginnings in, the breakdown of 

streamlined flow past an inclined aerofoil and this occurs often in practice : see below. 
The continued theoretical study of such a breakdown seems desirable and here we 
attempt to investigate the breakdown in terms of unsteady marginal interactive 
separation at high Reynolds numbers. In  such separations the overall flow field 
initially displays only small local flow reversals which are embedded in the thin 
attached boundary layer on the aerofoil surface, but it is believed that these can 
subsequently erupt through and out of the boundary layer. The theoretical approach 
in this paper has applications to several areas of research, where the breakdown of 
streamlined flow also occurs, although the main context of the present study is 
external aerodynamics. We restrict ourselves here to essentially planar flow past a 
streamlined aerofoil. 

The usual setting for dynamic stall is on slowly oscillating aerofoils, turbine blades 
or helicopter blades. The slow raising of the angle of attack may cause, initially, a 
separation and a recirculatory eddy flow only near the trailing edge of the aerofoil. 
This seems to be a relatively passive event, however, with the aerofoil motion 
remaining predominantly streamlined as the point of separation moves gradually 
upstream with increasing angle of attack. It is in sharp contrast to the sudden 
appearance, close to the leading edge, of a further eddy later in the cycle of oscillation, 
at higher angles of attack. This latter eddy, or sometimes more than one, amplifies 
and is ejected from the surface of the aerofoil, leading to the disruption of the entire 
flow field downstream. The main experimental and theoretical features of such a 
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dynamic stall are described by McAllister & Carr (1979), McCroskey (1982), Smith 
(1982) and Smith & Elliott (1985). The origins of the process have been viewed 
theoretically by Smith (1982) and Ryzhov & Smith (1984) in terms of marginal 
separation, and their predictions seem to be qualitatively in line with the main 
experimental observations. The theory is summarized below. 

We consider the two-dimensional unsteady laminar flow of an incompressible fluid, 
of density p, and kinematic viscosity v,, past a smooth aerofoil of thickness h,, chord 
length 1, and with a rounded leading edge. The Reynolds number Re = U ,  l m / v ,  
is assumed to be large. Here U ,  is the speed of the oncoming mainstream, which is 
inclined at  a small angle of attack a to the aerofoil. Cartesian coordinates 1 ,  x* ,  1, y* 
fixed in the aerofoil, with corresponding velocity components U ,  u*, U ,  v*, are taken 
such that (x* ,  y*) = (0, 0), ( 1 , O )  are the leading and trailing edges respectively. If 
p ,  is the free-stream pressure then we write the pressure as p, +pm UZ, p and the 
time as 1 ,  t* /U, .  For Re % 1, then, provided that the thickness-to-chord ratio is 
sufficiently small, say h,/ l ,  = O(a) ,  the flow past the aerofoil remains fairly 
streamlined. That is, over most of the flow field the flow is only a slight deviation 
from the uniform stream u* = 1, v* = 0, while the boundary layer remains attached 
to the aerofoil surface even in the neighbourhood of the trailing edge if the trailing 
edge is sharp enough, and the typical timescale t* is O(1).  

The crucial area of interest now is the nonlinear zone of extent O(a2) in x* and y* 
at the leading edge, where effectively the Navier-Stokes equations reduce to the 
inviscid potential-flow equations for flow past a semi-infinite parabola at a finite 
scaled angle of attack cr, subject to the condition of tangential flow along the aerofoil. 
Hence an unsteady inviscid tangential slip velocity U,,(x,t) is set up along the 
parabola surface n = 0+ ,  and we shall assume U, is known. Here a2x is the 
normalized distance along the surface from the front stagnation point, a2n denotes 
the distance normal to the surface and t is the small timescale given by t* = a2t. The 
velocity is reduced to rest by means of a thin viscous boundary layer, governed by 

v=-- (1.la) 
the classical equations 

- 1  a@ a@ u = -  
aY ’ (a2Re)t ax ’ 

( l . l b )  

where y = (a2Re)h is the boundary-layer coordinate and a2(azRe)-$h is the stream 
function. Here u and v denote the tangential and normal velocity components 
respectively. These equations are subject to the conditions of no slip at  the aerofoil 
surface. 

u = @ = O  o n y = 0 ,  ( l . l c )  

and the requirement that the solution should match with the outer inviscid flow. Thus 

( l . l d )  

where 6* = (a2Re)-k?(x, 1 )  is the boundary-layer displacement which is to be found. 
Given a suitable starting form at t = 0, we are now in a position to integrate (1 .I a-d) 
forward in time. 

The leading-edge zone is, from above, of streamwise extent O(a2)  and of thickness 
O(aRed), where for self-consistency we see that a must be restricted to the range 
Re-4 4 a G 1. If a is reduced to O(Red) the leading-edge zone becomes asymptotically 
indistinct from the O(Re-l) region surrounding the leading edge which is governed 
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by the full Navier-Stokes equations. On the other hand for u of 0(1), there is 
in general virtually no attached flow over one of the aerofoil surfaces and the 
leading-edge region becomes asymptotically indistinct from the rest of the flow field 
with increasing a. The breakdown of the overall flow structure, when Red < u < 1, 
can take place first through the above unsteady boundary-layer flow in the nonlinear 
leading-edge zone. An alternative breakdown for unsteady boundary-layer flow is 
described by the work of Van Dommelen (1981) and Elliott, Cowley & Smith (1983), 
but that is more relevant to flows past bluff bodies, where no steady-state solution 
exists for a completely attached boundary layer, and a drastic, unsteady, breakdown 
at a finite time is inevitable. Our concern here is focused on marginal breakdown 
(Stewartson, Smith & Kaups 1982) where the solution to the steady-state version of 
(1.la-d) exists or nearly exists. This seems a more appropriate context for aero- 
dynamic stall. 

In steady marginal flows the scaled skin friction 7 = au(x,O)/ay becomes zero, or 
close to zero, in the neighbourhood of the regular separation point x = z,. In fact 7 

acquires there either a parabolic form, with a positive minimum, or the form of the 
vanishing square-root singularity (Goldstein 1948), depending upon whether the 
scaled angle of attack B defined above is less or greater than the critical value B, that 
corresponds to regular separation. Therefore the steady-state solution to (1 .1  a-d) 
ceases to exist about x = x ,  near t~ = B ~ .  A local order-of-magnitude analysis then 
indicates that, in a region of streamwise length O( I B -  a$) about x = x,, a thin viscous 
sublayer of thickness O ( I ~ J - B , ~ ~ )  drives the flow, with a relatively slow local timescale 
t = O(la-a,lf) for unsteady marginal flow. This is in some sense a weakly nonlinear 
theory, with the local flow problem reducing to the study of an unsteady nonlinear 
integrdifferential equation [( 1.2) below]. As regards this equation, the case where 
la-a,l is relatively large, greater than any inverse power of the effective Reynolds 
number R, = a2Re, has been examined by Smith & Elliott (1985) for unsteady 
motion, while the case where I B - B , ~  = O ( R 3 )  and interactive effects come into play 
has been studied by Stewartson et al. (1982) for steady motion and by Smith (1982) 
and Ryzhov & Smith (1984) for unsteady motion. For both of the unsteady regimes, 
classical and interactive, just mentioned, it was shown that the instabilities present 
in the local separated motion can accumulate to force a breakdown within a finite 
scaled time, for sufficiently confined initi$disturbances. For example, Smith ( 1982) 
showed that if x - x ,  = R;& and t = RlgOt denote the short streamwise and slow 
temporal scales respectively, with the displacement of the form 

a* = R-‘ l d ( x , t )  = R ~ { 6 0 + R ~ [ 6 1 T + ~ , ( T , f ) ] +  ...}, 

where So, 6, are positive constants, then the displacement correction & satisfies the 
equation (in normalized form) 

where ‘0 ’ represents O( 1 )-terms. The first integral here accounts for the interaction 
with the external mainstream and the second accounts for unsteady effects. With 
certain initial disturbances it was found that there is a singularity involving a 
nonlinear - focusing about a position T = T ,  at a finite time f = f , ,  with 
A, - (f,-l)+Ao($) as f + f ; .  Here 9 = ( Z - T s ) / ( l , - f ) ~  and A, satisfies a nonlinear 
ordinary integro-differential equation [repeated in (2.5) below] which therefore fixes 
the terminal form for &. The above focusing or breakdown implies that a new 
structure emerges when the time (2 ,  - f )  is as small as O(R;%), producing a shortened 
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lengthscale lZ-Zsl of O(R;B). In the new structure set up then, the new localized 
variables are X and T ,  where 

(1.3) 
1- 

x- X, - R $ f s  = R;)X, t - R;Ots = R,!T, 

and a t  this stage ( X ,  T = O( 1)) anew, fully nonlinear, unsteady triple-deck interaction 
comes into play. 

Our concern is with this next stage of the dynamic-stall phenomenon, governed 
by the scalings (1.3). In $2 below the triple-deck evolution problem associated with 
(1.3) is described. To the best of our knowledge, although the nonlinear unsteady 
triple-deck problem has been analysed by Smith (1979), Burggraf & Smith (1985), 
Duck (1985) and others in connection with lower-branch stability in attached 
boundary layers, the context of unsteady incipient separation and dynamic stall has 
not been seriously considered yet. A study of the linearized problem is undertaken 
in $3, together with various limiting solutions which lead to a study of the proposed 
nonlinear breakdown in $4. That is, we indicate that this new stage, defined by (1.3) 
and controlled by a nonlinear triple-deck problem, itself becomes singular within a 
finite time T .  The breakdown of the new flow structure associated with this 
singularity leads on to yet another new stage, an Euler stage where the streamwise 
and lateral dimensions of the recirculating eddy both become comparable with the 
original boundary-layer thickness. That stage is a significant one, as it is likely to 
control the final emergence of the eddy from the boundary layer. Further remarks 
are presented in $5.  

Before proceeding, we should make some additional comments here. The boundary- 
layer flow we are addressing is typically accelerated before being decelerated, and so 
from a linear point of view both Tollmien-Schlichting and Rayleigh modes can be 
present, the latter having neutral modes which come from the upper branch of the 
Tollmien-Schlichting modes at  the pressure minimum upstream. In our present 
approach we are suppressing these modes, in a sense, or rather, we are suggesting 
that while they may be present it is our belief that the following account, one that 
is nonlinear in contrast to the above, could be the dominant process in dynamic stall. 
Also we wish to make it perfectly clear that our use of the term ‘breakdown ’, above 
and below, refers to a breakdown of the equations obtained by taking the relevant 
scalings, and hence to a change in the flow structure. This is not necessarily different 
from the phenomenon of ‘bursting’ in other contexts. Indeed, bursting can be 
regarded as one particular example of breakdown as defined above. 

2. The unsteady triple-deck problem 
We consider first the classical stage (1.1 ad), in which there is a sufficiently strong 

local adverse pressure gradient, prescribed by the quasi-steady outer inviscid 
solution, to force the classical non-interacting boundary layer to nearly separate, at  
some position x = x,. At this position the boundary-layer solution has the well-known 
Goldstein (1948) singular form, with the tangential velocity profile at separation 
u = Uo(y)  having the behaviour 

Here the constant > 0 is the quasi-steady adverse pressure gradient at x = 5,. 
Stewartson (1970) considered the steady form of (1.la-d) and showed that the 
Goldstein singularity is not removable using triple-deck arguments, implying that 
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the triple deck is not the controlling agency for boundary-layer separation. In fact 
the triple-deck structure does control breakaway separation, and it is the inviscid 
outer solution that switches to an alternative form. However, if we concern ourselves 
with weak Goldstein singularities, where the separation is confined to the boundary 
layer, then modification of Stewartson’s original analysis leads to the study of weak 
or marginal separations for both the steady (Stewartson et al. 1982) and unsteady 
case (Smith 1982). From the following work we contend, however, that the unsteady 
nonlinear triple deck is the controlling agency for far stronger separations. 

Consider now the fully nonlinear unsteady triple-deck problem near separation. 
For a nonlinear-unsteady-viscous balance of forces in the boundary layer, the 
orderings p = O(u2),  u = O[(x,-x)/y2], y = O(d) are required, while the form of the 
separation profile (2.1) as y+O+ demands that u = O[(xc-x)~], p = O[(x,-x)], 
y = O[(x,-x)+], t = O[(x,-x)t], the first three of which are the scalings obtained by 
Goldstein (1948) and Stewartson (1970). If most of the boundary layer is assumed 
to be simply displaced, riding over this viscous layer, then the perturbation to the 
separation profile, u = Uo(y), is O[(x,-x)f], and this gives rise to a normal velocity 
O[R;:(x,-x)-f] at the edge of the boundary layer. Hence as the position x = xc is 
approached the assumptions of classical boundary-layer theory (e.g. in ( 1 . 1 ) )  break 
down. In order that a consistent interactive structure may be constructed, to smooth 
out this singular behaviour, the pressure induced by this normal velocity, necessarily 
of the same magnitude, must be comparable with that needed to drive the viscous 
sublayer. This occurs when x, - x = O(R;f), and it implies that we take x- xc = R;fX, 
n = R>y = R;t Y ,  t = R$T, for the viscous sublayer, together with @ = R$Y, 

(2.2) 

Thus we recover the orderings (1.3). The result of the above triple-deck interaction 
is to reduce the unsteady separation process to that of solving the following nonlinear 
evolution problem. We have the boundary-layer equations 

U = R $ U , P = R ; ~  7P and a displacement of the form 

S*(x,t) = R;i[So-R$A(X, T ) +  ...I. 

subject to the following conditions: 

U = Y = O  o n Y = O ,  ( 2 . 3 ~ )  

Y - &[ Y + A ( X ,  T)I3 + . . . as Y + 00, 

ap 
U+$Y2,  z + p  asIxl+cm, 

(2.3d) 

(2.3e) 

The above conditions are, respectively, those of no-slip at the surface, the matching 
of the viscous flow to the displaced inviscid rotational flow, the matching to the 
attached boundary-layer flows upstream and downstream, and finally there is the 
usual subsonic pressure-displacement relation due to the outermost potential-flow 
region, the bar indicating that we take the Cauchy principal value. 

Support for the view that the above structure is indeed the next stage on from that 
of Smith’s can be obtained by recovering the latter’s solution as our present time 
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T+ -a. If we write X = ITI,$, Y = Iflip for T-t -a, with A - ITl%,(X), then 
the viscous flow in (2.3) has the starting form, as T +  - co, 

(2.4) I Y = IflQ,uP+ITI-&$d’,(B) Pz+Ifl-Y!P($, P)+ ...I, 
U = IZ’IQM Pz + ITI-ipA,(X) E+ ITI-FO(X, P) + . . .I, 
P = Ifl+@+ 0 + pI-Wo($) + . . .I, 

where the perturbation effects p, 0 = a!P/aP, Po, A, are governed by 

subject to the conditions of no-slip, the linear growth with I? of Y a t  the outer 
boundary and with the usual steady subsonic relationship between A, and 8. 

From Stewartson (1970), this problem can be reduced to the solution of a nonlinear 
integro-differential equation, which in a suitably normalized form is given by 

subject to the upstream and downstream constraints 

{c:B-t + ct$-! as X+ 00, 

c;lXl-t + c ~ $ l - f  as X+ - 00, 
a, - 

where c:, c h  are unknown constants. Smith (1982) showed that (2.5) is the terminal 
form of (1.2). Smith did not solve this nonlinear equation, necessarily a numerical 
task, but instead indicated the nature of the solution by solving the linearized form 

where formally do = sff ,*+O(s2)  and B > 0 is small. Equation (2.6) then has the 
acceptable solution 

exp (ini) r!-ir$ dr, 1 
where Re denotes that we take the real part of the integral and a, and a, are 
undetermined constants. In  addition it can be seen that when IT1 = O ( R p )  we recover 
Smith’s scalings. The above tends to  confirm that the origins of dynamic stall move 
on from the interactive marginal separation structure of Smith (1982) to  the present 
full triple-deck problem (2.3a-f). 

It was our original intention to  solve (2 .3~-f)  numerically, marching forward in 
time from some initial point T, (( - T,) 9 1 )  with the initial profile given by (2.4), 
and A = lT,[-iAo, where A, is given by solving (2.5) numerically. However, initial 
computing trials using arbitrary starting profiles for A ,  with suitably decaying 
asymptotic behaviour, gave us cause for concern. The numerical approach adopted 
was as follows. First p was set equal to unity (without loss of generality) and a guess 
was made for the local displacement - A .  To start the calculation (2 .3~-f)  was 
solved using the Keller-box scheme applied in the classical inverse manner keeping 
A fixed, suppressing the Cauchy-Hilbert integral (2.3f) and neglecting all derivatives 
with respect to  the time T .  The transformation X = tan X, was taken, with a uniform 
step-size DX, in X,, together with windward differencing, to  account for the infinite 
domain and reversed flow respectively. Multiple sweeping of the streamwise direction 
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then led to a converged solution to the above which was then used as the ‘initial-value ’ 
for the problem ( 2 . 3 ~ - f ) .  The equations were then marched forward in uniform 
increments DT of time. Typically we solved for the solution at the time level 
T = T* +$DT, with the solution known at T = T*, in an explicit first-order-accurate 
manner. Second-order accuracy for the solution at  T = T*+DT was then obtained 
by extrapolation from the solution at  times T = T* and T = T* + iDT. Once again, 
windward differencing was used and so multiple sweeping was necessary to achieve 
convergence. As a check, the zigzag scheme (Telionis 1981) was also used. This scheme 
is second-order accurate in DT, but in order to satisfy the CourantiFriedrichs-Lewy 
criterion a restriction on the size of DT is necessary (DT < sec2X, DX,/U,,,) and 
it is therefore not as robust. 

was used to obtain the 
‘initial-value’ solution and those at  the first couple of time levels, whereas at 
subsequent time levels we took a tolerance of The step-size DX, took 
values 7c/50,7c/100,7c/200, while the values for the increment DT in time taken were 
0.01, 0.005, 0.0025. Also the displacement was over-relaxed after each streamwise 
sweep, with a typical value of 1.2 for the over-relaxation parameter. In  order to start 
the calculations the trial forms A,  = H(X2 -&)/(X2 + 1): and A,  = H X / ( X 2 +  1),  with 
H = 0.5 were taken. The first form, case 1 ,  represents increasingly attached flow with 
a separation bubble followed by reattachment, while the second, case 2, represents 
increasingly reversed flow followed by reattachment. In  both cases the decay far 
upstream and downstream allows the behaviour (2 .3e) .  In all cases investigated a 
time was encountered where convergence was not achieved, with successive sweeps 
at the same time level leading to a divergent form. 

Typical results obtained are given by figures 1 4 .  Initially there is a smooth 
development in the solution for the pressure P ,  skin-friction 7 and local displacement 
- A .  However, near a critical time there are major fluctuations in all these quantities 
especially as regards the skin friction, to a lesser extent the pressure, and to a minor 
extent the displacement. In figure 1 (a+) and figure ~(u-c) we have cases 1 and 2, 
respectively, where we have sketched the solution initially (or at the first couple of 
time levels) and near to the time where the calculations break down. This breakdown 
is due to the appearance of short-scale disturbances whose increasing amplification 
rates ultimately lead to non-convergence. In  both cases the displacement changes 
only slightly, usually, with an increasing peak in A situated shortly after reattach- 
ment, followed by other minor oscillations. We also note a tendency of the original 
‘initial ’ disturbance to propagate downstream. This movement downstream is 
reflected in both the pressure and skin-friction results, while at  the position 
corresponding to the peak in A there are extremely large oscillations in both the 
pressure and the skin friction. There is also the appearance of a wave-like disturbance 
upstream of these oscillations. Increasing the size of the initial disturbance (for 
example H = 1.0) did not seem to affect the results significantly, while the use of a 
finer grid in XI (figure 4u-c) resulted in the breakdown occurring roughly at  the same 
time, although there appeared to be a lot more short-scale disturbances present. The 
use of a finer grid in time, however, dramatically altered the solution (figure 2a+), 
with the time of breakdown advancing and the growth of the disturbances much 
enhanced. A representation of how breakdown occurs for case 1 is given by figure 5. 

It was thought, at  first, that the breakdown of the calculations might be due to 
the use of the incorrect starting condition, and that using the correct perturbation 
to the separating-flow form might ensure the continuation of the solution. However 
recent experience (Smith & Elliott 1985; Ryzhov & Smith 1984) has led us to expect 

A higher tolerance for convergence, typically lop6 or 

or 
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1-0.4 

P - x  

11.0 

4 -0.1 

4 

- :x - f x  

FIGURE 1 .  Results of nonlinear calculations (2.1 a-f)  - case 1 : initial displacement A = H(X*-&) /  
(X2+1)i with H = 0.5, DX, = n/100, DT= 0.01. (a )  The displacement - A ,  ( b )  the pressure 
perturbation P - X ,  (c) the skin friction 7. 



Dynamic stall due to unsteady marginal separation 

A 

10.4 

7 

497 

+P-x 

y-3.0 

FIQURE 2. As for figure 1 but with DT = 0.005. 
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4 -1.5 

FIQURE 3. Results of nonlinear calculations (2.1 a-f ) - case 2 : initial displacement A = H X / ( X a  + 1)2  
with H = 0.5, D X ,  = x/lOO, D T  = 0.01. ( a )  The displacement - A ,  ( b )  the pressure perturbation 
P - X ,  (c) the skin friction 7 .  
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0.4 
T =  0.12 

1-0.4 

I p - x  

FIGURE 4. As for figure 3 but with DX, = rr/200. 
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I 
I " " " " ' "  0.05 0.10 

Time 

FIQURE 5. Schematic diagram of convergence for case 1. 

a finite-time breakdown of (2.1 u-f) with the solution changing on small streamwise 
and fast time scales. In  order to provide some firmer foundation, we decided that a 
numerical and analytical investigation of a linearized form of (2.3u-f), with (2.7) as 
the starting form for A ,  could be useful, and this guide is presented in the following 
section. 

3. The linearized problem 
Given that the linearization in the previous stage is helpful in pointing to the 

nonlinear behaviour, and that the authors' recent work (Smith k Elliott 1985) on 
the corresponding unsteady classical problem was also aided by linear analysis, we 
follow a similar line here. To this end we write 

where 0 < B 4 1. The linearized triple-deck form is then given by 

(3.1 c) 

(3.1 d )  
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. -0.2 

-0.4 

. 
- in 

7L 

11.5 

50 1 

1-1.5 

FIGURE 6. Results of linear calculations (3.la-f) - case 1 :  initial displacement A ,  = H(XS-&)/  
(X2+ l)f with H = 0.5, DX, = x/lOO, DT = 0.01. (a) The displacement -AL, ( b )  the pressure PL, 
(c) the skin friction 7,. 
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IoA: 

FIGURE 7. Results of linear calculations (3 .1~~-- f )  - case 2: initial displacement A ,  = H X / ( X * +  1)2 
with H = 0.5, DX, = n/lOO, DT = 0.01. (a) The displacement -A,, ( b )  the pressure P,, (c) the skin 
friction T ~ .  
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together with the asymptotic form as Y +  00 

(3.1 e )  

Here P, and A, are linked by the usual pressure-displacement relation, and it can 
be verified that as T+ - 00 the form of (3.1 u-e) takes on a behaviour similar to (2.4) 
with the leading-order skin-friction A, being given by (2.7). 

Because of the arbitrariness present in (2.7) i t  was decided to again use the trial 
forms A, = A, and A, = A,, as given in the nonlinear case, to start the numerical 
calculation of (3.1a-e). The numerical method used was that as described for the 
nonlinear calculation with suitable modifications. Typical results for case 1 and case 
2 are given by figure 6 (u-c) and figure 7 (a-c) respectively. Here T~ = aU,(X, O)/a Y. 
The results mirror those of the nonlinear calculations, with breakdown again due to 
the fast growth of small-scale disturbances. As before the smaller the lengthscale the 
faster the growth of the disturbance ; however, the amplitudes of the disturbances 
are perhaps not quite as large as those given by the nonlinear calculations. Once 
again, it appears that there is a finite time breakdown, say as T+ - , of the solution 
to (3.1a-e). Our belief is that even if we used (2.7) to start our calculation the 
small-scale errors thrown up by the necessary discretization of the solution would 
grow and eventually terminate the calculations in a similar manner. To provide 
support for our belief an analytical investigation of (3.lu-e) is discussed below. 

Let us first introduce the local wall shear 

The solution to (3.1 u-e) can be obtained formally by using a double Fourier transform 
in X and T. If we look for a solution of the form 

and we take Q(w, E,P) = a2F/aEa, where we have taken f = (2iop)f$P, then i t  can 
be shown that Q satisfies 

where as f + O  we have the behaviour 

and although Q = O ( 6 3 )  as 6+ co the relevant condition is 

( 3 . 2 ~ )  

(3.2b) 

(3 .2~)  

_ -  
Here P, A and x are the respective double transforms of P,, A, and h while 
the parameter k = -+i/3/(2i/lo)f represents the relative influence of spatial to temporal 
scales. The solution to (3.2a-c) is best seen by taking 
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A = 2n/k 
h-------+i 

FIGURE 1. Schematic description of an unstable perturbation in an annular jet. 

generalizations such as the inclusion of viscosity (Dombrowski & Johns 1963) or 
spreading (Weihs 1978) did not change the qualitative behaviour. 

The annular jet is thus useful in showing how the different dominant modes of 
instability arise and change in importance as one changes the ratio of inner to outer 
radii of the annulus from the circular jet limit (a/b+O) to the ( a / b +  1) thin flat sheet 
case. 

In the present paper we examine the linear stability of an infinitely long annular 
jet moving relative to the media external and internal to the jet. The stability of jet 
shape to temporal perturbations in the radius is studied, as there is no experimental 
evidence for the existence of the primary modes of spatial instability discussed by 
Keller, Rubinow & Tu (1973). A parametric study of the effects of surface tension, 
viscosity and relative velocity is performed. 

2. Formulation of the stability problem 
Consider an infinitely long liquid jet of annular cross-section with internal radius 

a, external radius 6 ,  and constant density p, viscosity ,u and surface tension u (see 
figure 1). The jet is moving at fixed axial velocity U through an inviscid medium of 
constant density p^(p^ 4 p ) .  

The linear stability of this jet, when subjected to infinitesimal perturbations, will 
now be studied. Defining (figure 1) a cylindrical coordinate system (r, 8, z )  in which 
the z-axis coincides with the jet axis and moves with it at  speed U ,  one can write 
the perturbed form of the cylinder, assuming only axisymmetric perturbations, as 

r b ( z , t )  = b + q b ( z , t ) ;  r a ( z , t )  = a + q a ( Z , t ) ,  (1) 

~ 5 ( z ,  t )  = Re ( ~ 0 5  exp (/35 t +ik5 2)) ( j  = a, b) ,  (2) 

where /?, are the complex frequencies and k5 the wavenumbers of the perturbations. 
Conservation of mass over a finite but arbitrary length of the jet much larger than 
the wavelength leads to the relations (Meyer 1983) 

where va, ?jb + a, b ,  respectively. The perturbations take the form 

when a / b  is of order 1. This does not include the limiting case of a full cylinder (a+O) 
or a hollow jet (a finite, b+oo) ,  but these cases do not require the compatibility 
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and hence k+O corresponds to T-+ - co with the solution to (3.5a-c) matching that 
of Smith's. 

What we really require, however, is the ultimate form of the solution, be it as T 
tends to a finite value or as T-t  + co. This can be obtained by considering Ikl & 1. 
For Ikl large the Appendix shows that to leading order (3.5a-c) becomes 

(3 .7a)  

which, with the use of relation (2 .3c) ,  can be inverted to give the evolution equation, 
in an integro-differential form 

(3.7b) aAL(X,T)+'O' ="I I T  {jmw(f,T)-l) df 
d T  

P x F  2 d 2  -m x af2 ( f - X ) s  (T-T')i 

for A,, where the '0' represents unknown terms at T = - 00, X = - 00 due to 
integration. We see that (3.7b) gives the possible scaling IX-X,I - IT-!!$, which is 
in line with k+ 00 as T+T,- and implies a final form with this ordering. However 
(3.7b) is a little difficult to interpret directly. If, instead, we consider ( 3 . 7 ~ )  together 
with (3 .4)  we obtain the dispersion relation = #W. So if we take P*(w, T )  where 

then P*(w, T) = X B 5 ( w )  exp exp (ilrji) T (j = 0, 1,2). 
5 1 

It appears at first that there are three discrete modes, one stable (j = 2 ) ,  one unstable 
( j = 1 ) and one neutral (j = 0) ; however further study implies that the neutral mode 
is not present (see $4). After a short time of exponential growth the unstable mode 
will dominate, giving 

where C.C denotes the complex conjugate. Hence for a particular wavenumber, say 
oo, the unstable mode grows exponentially and moves downstream with wavespeed 

It can be seen next that the above gives strong evidence of a breakdown. For even 
if we choose B,(w) so that the integrand is well-behaved, having exponentially 
decaying behaviour as IwI + 00 in the form 

a( "wo)i/p!. 

P*(w, T )  = exp " , T ~ ~ ~ ~ / ~ ( T - T , ) ] + . . . ,  Y 
where T, is some constant, then, although the solution is initially well-behaved, as 
T+ - 00, there is a breakdown as T+T,- . Thus we have indicated formally the 
possibility of breakdown, whose form we could presumably obtain from the evolution 
equation (3.7), and the analysis seems to suggest that the linear triple-deck problem 
suffers a finite-time collapse. We see from the solution for P* that the larger the value 
of w ,  i.e. the smaller the X-scale of the disturbance, the faster the exponential growth. 

The property above, that the smaller the lengthscale of a disturbance the faster 
is its growth, tends to back up the numerical findings described earlier, although it 
must by the same token cast doubt on the accuracy of those numerical solutions. 
Necessarily, small errors caused by discretization of the equations are also magnified 
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by the above instability. Refining the grid does not improve the situation, since i t  
allows smaller-wavelength disturbances to be resolved and so results in more rapidly 
growing instabilities. We believe that the dominent phenomenon can still entail a 
finite-time breakdown of the solution to (3.1 a-e) due to such small-scale growth. It 
may well be that nonlinearity would smooth out -he smaJl-scale growth and allow 
the solution to continue past T = T,. The earlier non,inear calculations seem, 
however, to indicate otherwise and we feel that the nonlinear problem mirrors the 
above, resulting in a finite-time breakdown at T = T,  about a position X = X, with 
IX-X,I - (T,-T)i. That is followed through in $4. 

The breakdown of such a linear solution was noted also by Moore (1979) while 
studying Kelvin-Helmholtz instabilities on velocity-discontinuity shear layers. 
There, as here, the development of a finite-time singularity occurs because the 
scalings chosen are not valid for sufficiently small-scale disturbances. If, however, the 
wavenumber spectrum of the initial disturbance is made to decay sufficiently rapidly 
as IwI -+ 00 then initial-value problems for larger-scale disturbances can be accom- 
modated (Moore 1979; Ryzhov & Smith 1984). Similar remarks hold for our linearized 
problem above. If the complete spectrum is considered, the linear disturbances do 
not exhibit temporal growth at infinite wavenumber and therefore they exhibit no 
finite-time breakdown then. The breakdown we postulate above is because we are 
dealing with approximate solutions (for R, large) valid for a certain wavenumber 
range. 

4. The finite-time breakdown 
To provide evidence for a nonlinear breakdown let us look for a consistent 

description to (2.3~-f ), assuming that A becomes large. From the asymptote ( 2 . 3 ~ )  
we see that, for Y large, Y = O(A)  and hence Y = (A3) ,  U = O(A2) .  A balancing of 
the unsteady, inertial and pressure forces then gives the scalings P = O(A4), 
1x1 = and IT1 = O(A--6). However, we cannot balance the O(1) viscous term, 
which is much smaller than the other terms. Therefore, to leading order, we have 
an inviscid structure with a fast timescale and lengthscales 1x1 - lqi, Y N 1q-t 
producing a 'bursting ' effect as T + O  - . The problem is given now by 

ay au au ayau ap u'ay, aT+u-- - -=- - (x  T) ax axay ax 9 9 

(4.1 a, b )  

subject to the inviscid constraint of tangential flow 

Y = O ( Y )  as Y+O (4.1 c) 

and, as Y + 00, the asymptote 

2 
(6,p T) dt+-P(X, T )  + . . . Y - +[ Y +A(& T)I3 + sx 

-m 
(4.1 d )  

and the pressure-displacement law (2.3f). The above problem holds so long as a thin 
viscous sublayer of thickness O(A-i) exists in which the skin friction is O(At), which 
is large on the present scalings. Thus there is the continuing increase of reversed flow 
associated with A increasing, continuing the process of Smith (1982), although now, 
of course, the link is not so obvious. The existence of the viscous sublayer, necessary 
to bring the inviscid slip velocity to rest, is a real factor. Van Dommelen (1981) and 
Elliott et al. (1983) have shown that unsteady classical viscous layers are prone to 
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eruptions, causing a breakdown themselves. Let us assume for now, however, that 
the form of A allows the attached viscous layer to exist. 

The same arguments apply to the linear triple-deck problem (3.la-e) and this also 
results in an inviscid problem for a region where Y = O(AQ) % 1. Here q is an unknown 
positive constant. In this region we have Y = O(A1+2Q), U = O(A'+Q), P = O(A1+3Q), 
1x1 = O(A-3Q), IT1 = O(A-5Q) and the resulting problem is given by the linearization 
of (4.1 a-d). Again we require a viscous sublayer whose thickness is of O(A-5Q/2) which 
gives rise to a skin friction of O(A1+7Q/2). We note that once again we have 1x1 - I@, 
Y - l f l - 8 .  The transformed linear problem is then given by 

subject to = 0 on Y = 0 and having the behaviour 

where as before P = 1~12. Here the f sign is taken for w 3 0. it can easily be seen 
that F has the solution 

which, on using the asymptotic condition, leads to the result 

If we consider the case w 2 0 only, then it is clear that for 8-real there is no solution, 

- in - + 
but for P-complex we have 

3 P = -2, 
( - 2B/lwl)p 

where now the T sign refers to Im (- 2p/w) 3 0. Thus using P = 1~12 we are led to 
two relations which square up to give the single dispersion relation 8pS = n21wI5 as 
in $3, but we must insist that /3 is not real. The same result is found for w < 0. 
Alternatively we have the relation 

which is of course the result (3.7a), the asymptotic form as lkl+m of the linear 
triple-deck problem of 53. Hence the above consistent description seems to tie in with 
our previous linear analysis. 

What we require is the terminal form of the nonlinear and linear triple-deck 
problems as T + T, - . Let us take the scales X- X, = (T - T) tg  and Y = (T, - T ) f  P 
with Y = (T,-T)-f-Sp(8, P), U = (T,-T)f-S8($, F), A = (T,-T)-8A(g), 
P = (T, - T)-t-sP(a),  where s = for the nonlinear problem and an unknown positive 
constant for the linear problem (A = A,, . . . etc). We obtain, for the case of the 
nonlinear problem, 

subject to the inviscid tangential flow constraint and the matching asymptote 
obtained from (4.1c,d). Elliott et al. (1983) solved a somewhat similar problem 

17 BLM 179 
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without the unknown pressure gradient, but the method of characteristics used 
in that problem does not seem to be able to  resolve the present one. The above 
is, of course, subject to the corresponding sublayer-similarity problem (where 
Y = O[(T,- T $ ] )  having a solution. We may, however, linearize (4.2a, b )  to obtain 
the equations 

which are subject to  the conditions 

P= o(P) as P+o, P- $A(X) P as P-too. (4.3c) 

Here the linearized-nonlinear case has s = i ,  while s > 0 for the general linear case. 
We may solve (4.3a-c) by again introducing z = P and $(x, z )  = a2P/az2, and we 
f h d  that & has to satisfy 

where the term in the square brackets comes from the unsteady effects. These are 
subject to the constraints 

s," &dz = +A($). 

We can simplify the problem by eliminating the term 
new variable 

g = z ! X =  P X =  P X  

and take & = $(g, z )  and P = P([, z )  we find that 

$a&/az. If we introduce the 

5 aP 

If we now take the Fourier transform of this equation with respect to g ( [ + w )  we 
find that 

(4.4) 258/2 exp [iiwzt] - (21-58/2 exp [ -+iwzt] Q*(w,  z ) )  = -i(iw) P*(w, z ) ,  

where &* and P* are the respective transforms of $ and P .  It can be seen that there 
is a formal solution for Q* and this tends to back up our belief in the existence of 
a finite-time singularity. So far, however, no solution has been obtained from the 
conditions to  give the terminal form for P (or alternatively for A )  and this is certainly 
something one would wish to obtain. It is also in contrast to the simple solution to 
(4.1 a ,  b )  for the shear-flow case in Burggraf & Smith (1985), where the large-amplitude 
form for A satisfies a Benjamin-Ono equation, although again the possibility of a 
finite-time singularity in the shear-flow case, with a less simple form for A ,  seems to 
us a strong one. 

Given that the breakdown does occur in the present nonlinear and linear cases, 
what is the next structure to govern the flow 1 According to the preceding analysis 
there is a short-scale breakdown with IX-Xol - IT- T,la and with the viscous flow 
splitt,ing into two. We have an outer inviscid part, erupting like Y - lT-T,l-i, and 

a 
aZ 
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a diminishing inner viscous region with Y - lT-Z$. We see that eventually this 
outer region will be indistinguishable from the majority of the boundary layer, which 
has thickness O(R;:). This occurs when (T-T,I = O(R;f),  that is, when 

and - x, - R P ~ ,  - R;IX, = o(R;?). J 
These are the Eulerian scalings, where the local streamwise and normal coordinates 
are of the same order, and the resulting inviscid problem is subject to the existence 
of a viscous sublayer of thickness O ( R 3 ) .  In other words, in the new stage defined 
by (4.5) the velocity and pressure disturbances become increased to O( 1) and so the 
Euler equations come into operation across the entire boundary layer. The eddy starts 
to span the boundary layer and the determination of its evolution then becomes a 
rather difficult vortex-sheet problem, which has still to be tackled. 

5. Remarks 
We should remark first that there are numerous other aspects in the overall flow 

field, similar to those discussed by Smith & Elliott (1985). These include different 
kinds of instability, namely the viscous-inviscid Tollmien-Schlichting kind, the 
inviscid short-scale Rayleigh kind, and the inviscid Kelvin-Helmholtz kind, although 
they need not be the most important instability processes in practice. Also, the 
theories for these other instabilities have yet to reach a sufficiently advanced stage 
to accommodate nonlinearities of the kind given by the present theory although, for 
example, a start has been made by Burggraf & Smith (1985) and by the present 
authors, and there are many computational studies in the literature. Again, the 
present theory addresses marginal separation only, as opposed to the more common 
triple-deck breakaway or localized separation. Nevertheless, since the observed 
separation occurs near the leading edge, the process of dynamic stall appears in many 
ways to be more closely connected with marginal separation than with general 
mid-chord separation, in its beginnings. 

Beyond those beginnings, i.e. beyond the finite-time singularity proposed in the 
present work, yet faster timescales and increasingly shorter streamwise lengthscales 
come into operation and the local flow develops rapidly towards a nonlinear Euler 
stage, with the length- and the timescales shortening then to the scale of the 
boundary-layer thickness O ( R 2 ) .  Outside these fast local developments the flow can 
remain quasi-steady , or less unsteady, until other local breakdowns occur elsewhere. 
Locally, the final nonlinear Euler stage ($4) appears to be predominantly inviscid in 
nature, although it is certainly influenced by bursts of vorticity (Van Dommelen 
1981 ; Elliott et al. 1983; Burggraf & Smith 1985) from the viscous sublayer at the 
solid surface. The degree of this extra bursting influence and the properties of the 
whole Euler stage need to be researched much further. Meanwhile, it is of some 
encouragement that the theory so far appears to agree qualitatively with the 
experimental findings on dynamic stall, in the sense that it shows how an initially 
slender embedded eddy (or eddies) of lengthscale much greater than the boundary- 
layer thickness can change dynamically, by means of bursting through the present 
interactive mechanism, into a thick blunt eddy spanning the whole boundary layer 
in the Euler stage. Beyond that stage, shedding of the eddy seems a distinct 
possibility. 

17-2 



510 

thanks the SERC for financial support during part of this research. 

J. W. Elliott and F.  T. Smith 

The referees' and the editor's comments are gratefully acknowledged, and J. W. E. 

Appendix. Concerning the deviation of (3.7~) 
Let us consider the general Whittaker equation for H,(k; 6) 

This has standard solutions W,,(k; E ) ,  and M,(k; 6) (Abramowitz 6 Stegun 1965). In  
the following section the asymptotic behaviour, as k+  00, of the above standard 
solutions is investigated and it is easily seen that their behaviour splits in two: 
an outer 'inviscid' solution when E = O(lk1) and an inner 'viscous' zone when 
E = O(1kl-l). In fact only the behaviour for k real and negative is discussed below. 
This involves modified Bessel functions in the inner region and exponential growth 
and decay in the outer region, although this can easily be extended to the case 
Re (k) < 0. The case for k real and positive and its extension to Re (k) > 0 can be 
discussed similarly although it is more complicated. In  the inner region it involves 
the standard Bessel functions, while we must split the outer region into two with a 
'critical layer' at = 4k requiring Airy functions to smooth the switch from 
oscillatory to exponential behaviour. 

For k < 0 we see that as Ikl+ 00 the inner 'viscous' forms for the standard solutions 
are given by 

where E = Ikl-l($.2) and A, Ki are modified Bessel functions (Abramowitz & Stegun 
1965). From the properties of Bessel functions we know that in the double limit 
IkJ+co, u+co we have 

Hence the outer 'inviscid' forms for our standard solutions are given by 
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where instead of the representations given by (3.5b, c)  we can write F(k) and G(k)  as 
integrals of Whittaker functions, 

F(k)  = 42r(f - k) 

From (A 1) and (A 2) we see that as Ikl+ 00 the contribution to F(k) comes entirely 
from the inner solution, since Wi(k; 6)  is exponentially small in the outer region. 
Therefore 

However for G(k)  we see that the product of exponential growth and decay of the 
standard solutions in the outer region leads to a contribution from that region that 
cannot be neglected. If we write G ( k )  = G(1) (k )+G(2) (k )  where G(’) is the inner 
contribution then we see that as lk\ --f 00 

Similarly the outer contribution G(2) (k )  has the form 

From (A 4) and (A 5 )  we see that the larger ‘viscous’ contributions to (A 3) cancel, 
to the leading order, and so the leading-order term is a purely ‘inviscid’ one. Hence 
we see that as k+ - 00 

F ( k )  + ($$lklG(k) = - (A 7 )  

Therefore we see that, to leading order, (A 3) is given by (A 7) and so we can replace 
equation ( 3 . 5 ~ )  by (3.7a) for (-k) 9 1. 
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